14C constraints on the glacial-age ocean circulation and mechanism of deglacial CO$_2$ rise

Scott Lehman, Tom Marchitto

and

Konrad Hughen (WHOI), John Southon (UCI), Joe Ortiz (Kent St.), Jacqueline Flueckiger (ETH-Zurich)
outline

• 14C systematics
• Cariaco Basin archive
• deglacial varve-counted calibration (14.5-9 k cal yr)
 • reconstructed ATM 14C activity linked to climate
• extended calibration in long cores (last 50 k cal yr)
 • the glacial “14C redistribution problem”
• constraints on the glacial circulation and mechanism of atmospheric CO$_2$ change from ocean 14C (Baja CA)
• PO puzzle?
^{14}C is cosmogenic,

\[^1n_0 + ^{14}\text{N}_7 \rightarrow ^{14}\text{C}_6 + ^1\text{H}_1 \]

and weakly radioactive,

\[^{14}\text{C}_6 \rightarrow ^{14}\text{N}_7 + \beta^- + \bar{\nu} + Q \]

with $T_{1/2} = 5730 \pm 40$ yr

and abundance today of

$1.176 \times 10^{-12} \ (^{14}\text{C}/\text{C})$
incorporation of ^{14}C into global carbon cycle

$^{14}\text{N} \ (n,p) \ ^{14}\text{C}^*$

$^{14}\text{C}^* + \text{O}_2 \rightarrow ^{14}\text{CO} + \text{O}$

$^{14}\text{CO} + \text{OH} \rightarrow ^{14}\text{CO}_2 + \text{H}$
Basic assumption of ^{14}C dating:

^{14}C production is constant, thus a steady state inventory is reached at which loss by decay balances production (i.e. $(^{14}\text{C}/\text{C})_{\text{form.}}$ is constant) then:

$$(^{14}\text{C}/\text{C})_{\text{meas.}} = (^{14}\text{C}/\text{C})_{\text{form.}} \cdot e^{-\lambda t}$$

where $\lambda = \text{decay constant or } 1/8033 \text{ yr}$

(for $T_{1/2} = 5568 \text{ yr}$)

and

$$t = -8033 \ln[(^{14}\text{C}/\text{C})_{\text{meas.}} / (^{14}\text{C}/\text{C})_{\text{form.}}]$$
changes in 14C production rate

geomagnetic field variations ($>10^3$ yr)

greater field strength \rightarrow less production

solar variations (10^1-10^2 yr)

greater intensity \rightarrow less production

redistribution amongst reservoirs
Bard et. al. ‘91 U-dated corals

is a more complete calibration likely to be “linear”? and….
what might derived “initial ^{14}C” tell us about the Earth system?
semi-enclosed
seasonally productive
anoxic
seasonal migration of the ITCZ

wet:
increased run off and terrigenous sedimentation (dark)

annual couplet (Pb etc.)

dry, windy:
increased upwelling and marine biogenic sedimentation (light)
AMS 14C date foraminifera from laminated sediments
Cariaco sediment “lightness” v. Greenland accumulation

- count varves (~5500 yr floating chronology)
- 14C date foraminifera (~decadal spacing)
- anchor chronology (“wiggle match” to tree ring 14C)
• reservoir age stable to climate
• end Cariaco YD within 5 yr of tree ring YD
initial 14C activity

Δ^{14}C $\% = [(F_m e^{\lambda t}) - 1] \times 1000$

Cariaco

trees

“SWAG”

calendar age (yr BP)
14C vs. climate

$\Delta ^{14}$C detrended (‰)

Cariaco Basin calendar age (yr BP)

YD
Cariaco & GISP2 chronologies agree w/in 10-100 yr

YD 14C does not scale to 10Be, therefore not production, but an ocean signal:

- $P = \sim 500$ mole 14C/yr
- 500 GTC
- 1000 GTC
- 36 GTC/yr
- 38000 GTC
extended 14C calibration

having demonstrated Cariaco and Greenland climate changes synchronous, extend calibration through longer record of discontinuously laminated sediments
ODP 1002 / GISP2 correlation of Peterson et. al.

% Reflectance

1002C

GISP2

GISP2 age (cal kyr BP)

layer counts end
calibration results

Cariaco (1 sigma error)
Suigetsu varves
Bahaman speleothems
reconstructed 14C activity

- Cariaco (1 sigma error)
- Bard corals
- INTCAL/58PC
geomagnetically modulated production

14C production (mol/yr)

NAPIS75 intensity production (error)

relative dipole strength (I/I_0)

14C prod. v. I/I_0 from Masarik & Beer ‘99
simulated vs. observed $\Delta ^{14}C$

model:

for contemporary carbon inventories and exchange terms, variable production (approx. $\pm 100\%$ errors not shown)

glacial data look like estimated production with small C-cycle
PRE-INDUSTRIAL CARBON CYCLE
(consensus estimates)

Atm 280 ppm pCO₂
600 GTC

2200 GTC

1000 GTC

CaCO₃ Seds
~ 1 GTC/y

38000 GTC

36 GTC/y

GLACIAL CARBON CYCLE

< Atm 210 ppm pCO₂

< Bio/Soils

< Shallow CaCO₃ Seds

< Deep ventilation
a smaller glacial carbon cycle?
deglacial reorganization?

![Graph showing atmospheric Δ^14C (%o) over GISP2 age (yr BP). The graph has a time scale from 0 to 50,000 years before present (yr BP) and a Δ^14C axis ranging from -200 to 800‰. The graph highlights different periods labeled H0, H1, H2, H3, and H4.](image)
Broecker issues:

implies more deep ocean aging than observed
implausibly steep
ATM 14C and CO$_2$ histories similar

14C-depleted deep ocean is source of atm. CO$_2$ rise

CO$_2$ from Monnin et. al. '01
$\delta^{18}D$ per mil vs. CO$_2$ ppmv in Antarctic climate. Monnin et al. ‘01
venting of ocean CO$_2$ thru the Southern Ocean

WOCE/JGOFS CO$_2$ survey: sDIC [μmol kg$^{-1}$]

compilation of Gruber
from Adkins ('02) pore fluid $\delta^{18}O$ and chlorinity
Southern Ocean “CO₂ window” closed during glacial

deep ocean CO₂ rises and ages (¹⁴C decay)
Pacific benthic-planktic 14C age differences

Keigwin, Lehman, Cook (unpub.)
deglacial mechanics

radiometrically old, isolated AABW mixed up to SO surface and into AAIW?

after Sverdrup et al. 1942
Baja CA core GC31/PC08 (705 mwd)

Baja sediments can be placed on "Greenland" timescale and benthic (i.e. bottom water) Δ^{14}C estimated (similar to Cariaco planktic strategy)

- 23.5°N, 111.6°W
- 705 m water depth
- open margin
- O$_2$ minimum zone
- \sim30 cm/kyr

[Graph showing depth and δ18O over calendar age BP]
Baja California intermediate water $\Delta^{14}C$ v. “ATM”

- extremely ^{14}C-depleted waters during deglaciation
- up to 4 kyr old if projected back to atmosphere along decay curve
- similar to age of presumed deep, old reservoir
$\Delta^{14}\text{C}$ traces ocean’s CO_2 release

- very old intermediate waters during two CO_2 increases
- partial relaxation during Antarctic Cold Reversal
- coincides with main parts of the atmospheric $\Delta^{14}\text{C}$ drop
link with Southern Ocean deep convection

- **LGM**: expanded sea ice, poor ventilation, CO$_2$ ‘leak’ capped
- **deglaciation**: sea ice retreat, deep convection/upwelling
- simultaneous warming and release of CO$_2$
- temporarily interrupted by Antarctic Cold Reversal

Keeling (2007) *Science* Perspective
Link with North Atlantic Deep Water export

- NADW ‘shutdown’ inferred from 231Pa/230Th (during Heinrich event 1; reduction during Younger Dryas)
- CO$_2$ release / increased Southern Ocean ventilation correspond closely w/ NADW reductions

- tight N-S coupling
- overturning in Southern Ocean as response to reduced NADW?
- bipolar seesaw warming, sea ice retreat?
- deep water formation required to balance global deep upwelling?

Pa/Th from McManus et al. (2004) Nature
conclusions

• atmosphere and intermediate water $\Delta^{14}C$ reconstructions require substantially reduced ventilation of deepest ocean during glacial

• deglacial atmospheric CO$_2$ and $\Delta^{14}CO_2$ change is likely associated w/ improved ventilation of the Southern Ocean (6x according to some geo-chemical model constraints)

• ventilation histories of Southern Ocean and North Atlantic are inversely (and v. tightly) coupled

• and....
altered
N-S balance

Fig: Toggweiler ‘99
data slides lacking citations are from the following papers:

