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0.1 Objectives

a)

b)

Figure 1: a) Sea Surface Temperature
Anomaly (◦ C), 12/1997 McPhaden (1999). b)
McGregor samples a fossil coral from Kiriti-
mati, central equatorial Pacific.

New wavelet-based statistical tools will be used to validate
coupled climate models against coral reconstructions of the El
Niño/Southern Oscillation (ENSO) over the past few thousand
years. These novel statistical techniques, developed at CIRES,
have shown promise in validating climate models against mod-
ern observations, but the short duration of observations has
limited the power of the method. Taking advantage of an op-
portunity for synergistic collaboration with Australian scien-
tists, we will perform the first statistically robust diagnosis of
ENSO model/data agreement on millennial timescales. The
project has potential for leaps in understanding coupled cli-
mate model performance and ENSO response to climate forc-
ing, and it will initiate new international and interdisciplinary
collaborations.

0.2 Background and Importance

Paleoclimate data provides context for modern observations,
which is sorely needed when studying the decadal-to-centennial

variability of interannual climate signals like the El Niño/Southern Oscillation (ENSO). How representative
is the 25 year TAO/TRITON ENSO record? How unlikely was the strongest observed El Niño event (1997-8;
Fig 1a, NOAA estimates $25 billion damage) when compared to the past 5,000 years (e.g., coral reconstruc-
tions in Fig. 1b)? How much has ENSO variability changed in the past, and how much is it likely to change
in the future? How reliably can we estimate these changes over long timescales, when anthropogenic climate
change is expected to have a profound impact?

ENSO strongly influences drought and flooding events in both Australia and the US (Ropelewski and

Halpert , 1987), thus planners in both regions require good ENSO statistics over decadal and longer timescales.
Under likely future forcing and past orbital forcing (e.g., the Maunder minimum) ENSO activity is expected
to change, but the direction of projected change is not consistent among models (Guilyardi et al., 2009), and
may not necessarily dominate over natural decadal variability (Power et al., 1999). Coupled climate models
are calibrated against and generally perform well when simulating modern observations (Neale et al., 2008),
but variations on centennial timescales (Wittenberg , 2009; Stevenson et al., 2010) indicate that models are
likely ‘overtuned’ to our short instrumental record, hindering simulations of past and future climates.

0.3 Innovative Aspects

We propose the first quantitative validation of the (Boulder) NCAR CCSM and (Australian) CSIRO Mark
3L against both modern observations and coral paleorecords (McGregor and Gagan, 2003) simultaneously.
Validation will rely on the recently developed wavelet probability analysis (WPA) toolbox of Stevenson

et al. (2010)1, which uses the probability distribution function of the wavelet spectrum to measure spectral
variability. By comparing subsets of one time series to subsets of another, it is possible to determine at

any desired confidence level whether the two time series differ (see Figure 2). Wavelet techniques natu-
rally allow simultaneous treatment of gappy timeseries (e.g., coral paleorecords) with continuous, though
limited-duration, modern observations, but WPA has only been used for model validation against modern
observations. This innovative research project will demonstrate WPA’s utility for paleoclimate.

Serendipitously, Drs. Helen McGregor at the University of Wollongong (UOW) and Steven Phipps at
the University of New South Wales (UNSW) have a new data/model comparison project, which seeks to
understand the contribution of climate change to the ENSO record using both fossil coral records and
(CSIRO Mk3L) model integrations. Coral records (McGregor and Gagan, 2003) from several locations in

1http://atoc.colorado.edu/˜slsteven/wpi/
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the western and central Pacific and millennial CSIRO Mk3L simulations are therefore available, but no

robust statistical techniques for model/data comparison have yet been developed or used by the Australian

group. As such, the Australian and Boulder teams are complementary. The collaboration will demonstrate
CIRES-developed model validation tools as well as broaden and further the CIRES presence in paleoclimate
and climate diagnosis research.

0.4 Research Plan

Ms. Stevenson will be traveling and working on this project as part of her PhD thesis (which has already
resulted in the development of the WPA tools). Comparison of the CSIRO Mk3L vs. NCAR CCSM and
modern observations will be performed in Boulder this summer, followed by a visit to UOW and UNSW
during the 2010/11 academic year. The research plan is:

• Validate long (8,000-10,000 year) CSIRO Mk3L and CCSM3.5 simulations versus modern observations
• Isolate contributions from orbital forcing in CSIRO Mk3L runs
• Travel to Sydney/Wollongong to learn coral reconstruction techniques
• Apply WPA procedures on coral records versus model runs and modern observations

• Validate long (8,000-10,000 year) CSIRO Mk3L and CCSM3.5 simulations against modern observations.
• Isolate contributions from orbital forcing in CSIRO Mk3L runs
• Travel to Sydney/Wollongong to learn the basics of coral reconstruction techniques; run WPA proce-

dures on coral records vs. model runs
• Return to Boulder and publish the results of the study

Methods for collecting and processing the coral records are described in (Gagan et al., 1998; McGregor and
Gagan, 2003). In the McGregor lab there are a variety of corals available for analysis, having been collected

from several locations in the western Pacific: from Papua New Guinea at both Muschu and Rambutso

islands (3◦S, 143◦E and 1◦S, 147◦E respectively). Central Pacific coral records are available as well, from

Kiritimati (1◦N, 157◦W). The record from Kiritimati in particular has been shown to exhibit an extremely

strong correlation between the δ18O record and SST, making this an ideal candidate for use in data/model

comparisons.

Separating the effects of sea surface temperature and salinity (SST/SSS) signal on the coral δ18O will be

achieved using the methods of Brown et al. (2008) to create ‘pseudocoral’ records from the CSIRO Mk3L

integrations. The pseudocoral method makes use of observed relationships between sea surface temperature

and salinity and the oxygen isotopic ratio at a particular location, to derive the expected δ18O for the model

output given its SSS and SST. This method has proven relatively accurate in the past (Brown et al., 2008),

and in the absence of detailed isotopic simulations is probably the most reliable method available. Dr.

McGregor is experienced in this analysis, and being able to rely on her expertise should be most valuable

for this part of the project, which will occupy roughly the first two weeks.

3.2 Model Intercomparison

I am proposing to work with Dr. Steven Phipps at UNSW on model/data validation. Dr. Phipps is an

expert in the use of the CSIRO Mk3L (Phipps, 2006), which shows similar behavior to the higher-resolution

version of the CSIRO model, but at a fraction of the computing cost. As such, it is very similar to the T31x3

CCSM3.5 model with which I have been working for the past two years (Neale et al., 2008; Gent et al., 2009).
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Figure 3. Results of hypothesis testing procedure. Left panels: validation of model runs against the
CORE hindcast; CCSMcontrol at top, RHLOW at middle, CM2.1 at bottom. Right panels: model/model
comparison. Top: CCSMcontrol vs. CM2.1; bottom: CCSMcontrol vs. RHLOW. In all panels, 0 indi-
cates model agreement and 1 model disagreement at 90% confidence.

The great power of this method is the ability to spec-
ify the significance level at which two time series disagree,
as a function of record length and frequency, allowing the
effects of changing model parameters to be precisely quan-
tified. This is done through measurement of the overlap
between IJPDF confidence intervals (i.e. Figure 2).

Empirical hypothesis testing is used in this analysis, since
using traditional methods to find the statistical significance
of overlap often yields misleading results. The IJPDF dis-
tributions of Sections 2.1 and 2.2 can be highly nonnormal,
and even the nonparametric Kolmogorov-Smirnov (K-S) test
will not necessarily give a representative result, since sam-
ples drawn from different distributions cannot be dismissed
without some a priori knowledge of the ‘correct’ distribu-
tion. Steps are as follows:

a. Determine the type of test to perform: model/model
or model/data.

b. Create the appropriate IJPDF distributions from sub-
sets of the input time series. For a model/data compari-
son, model self-overlap (Section 2.1) will be tested against
the model/data IJPDF distribution (Section 2.2). For a
model/model comparison, the two model/data distributions
will be compared.

c(1). To determine whether two distributions differ at sig-
nificance level α, compute the α

2 to 1− α
2 confidence intervals

on the two IJPDF distributions. If these intervals overlap,
the distributions are equivalent; otherwise, they differ.

c(2). To determine the level of confidence one may have in
differences between the distributions, repeat step c at many
different values of α. From this, find the largest α for which
the confidence intervals overlap, equivalent to locating the
smallest significance level at which the distributions differ.
Where αmax ≤ 0.1, for example, the null would be rejected
at the 90% level. In the limit of identical distributions, αmax

(minimum significance) approaches 1 (0); when there is no
overlap, αmax (minimum significance) approaches 0 (1).

The end result of applying steps a-c(1) is a map of the lo-
cations in parameter space where the two time series are the
same/different at confidence level α. If step c(2) is used in-
stead, a map of the confidence level at which the time series
differ results. This provides an immediate, visual depiction
of the effects of changing model parameters.

Model/data validation is performed on three runs: CC-
SMcontrol, the CM2.1 run discussed earlier, and an addi-
tional CCSM run using a lower value of the threshold rela-
tive humidity for cloud formation, hereafter ‘RHLOW’. To
prevent frequency ‘bleeding’ effects, the CORE hindcast is
compared only to model subintervals of the same length (in
this case, 55 years); this is therefore a test of how well the
agreement between CORE and 55-year model subintervals

compares to internal model variability. Results are found in
the left-hand panels of Figure 3; horizontal lines indicate dif-
ferences at the 80, 90 and 95% levels. CCSMcontrol agrees
relatively well with CORE from 2-6 year periods and for pe-
riods longer than 12 years, but not in the 6-12 year band.
RHLOW does somewhat better in the 6-12 year band, but
does not agree as well with CORE at long periods. Both
CCSM runs demonstrate better agreement with CORE in
the 2-8 year band than does CM2.1, but none of the models
perform well beyond 10 years.

Model/model validation is next performed, using two
pairs of model runs: CCSMcontrol/CM2.1 and CCSMcon-
trol/RHLOW. Results are shown in the right-hand panels
of Figure 3: CCSMcontrol and CM2.1 differ throughout the
4-10 year band, but only at long (≥ 200 year) subinterval
lengths. In contrast, for the CCSMcontrol/RHLOW com-
parison, long-period agreement is generally good, and the
areas of disagreement in the ENSO band are smaller than
for CCSMcontrol/CM2.1. Within the 2-8 year band, CCSM-
control and RHLOW disagree for subintervals longer than
200 years, and RHLOW shows better general agreement
with CORE for shorter periods. CCSMcontrol may there-
fore be considered less accurate for short-period ENSO. The
reverse is true for the 5-8 year band, where CCSMcontrol is
more consistent with CORE. Likewise for CCSMcontrol vs.
CM2.1, where CCSM shows better overall agreement with
data yet the models disagree with one another, this test
indicates that CCSMcontrol does a better job representing
ENSO variability.

The above test cases form ‘sanity checks’, in that chang-
ing model parameters affects the results less than using an
entirely different model. Also, an ‘intermediate’ comparison
case (not pictured) shows intermediate results: a test run
using the dynamic chlorophyll feedback of Jochum [2009]
shows differences from CCSMcontrol at the 85% significance
level throughout the ENSO band. We therefore anticipate
that this method will accurately represent true physical dif-
ferences between models.

3. Conclusions
Wavelet probability analysis is a robust method of mea-

suring agreement in ENSO variability between one or more
data sets. Using the PDF of the wavelet power, CCSM3.5 is
seen to agree extremely well with the ocean hindcast prod-
uct of Large and Yeager [2004a], lending credence to the use
of this model as a baseline for the study of long-term ENSO
variability.

Self-agreement depends strongly on the record length;
the self-overlap IJPDF confidence interval narrows expo-
nentially with the length of the model subinterval. Using
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Figure 3. Results of hypothesis testing procedure. Left panels: validation of model runs against the
CORE hindcast; CCSMcontrol at top, RHLOW at middle, CM2.1 at bottom. Right panels: model/model
comparison. Top: CCSMcontrol vs. CM2.1; bottom: CCSMcontrol vs. RHLOW. In all panels, 0 indi-
cates model agreement and 1 model disagreement at 90% confidence.

The great power of this method is the ability to spec-
ify the significance level at which two time series disagree,
as a function of record length and frequency, allowing the
effects of changing model parameters to be precisely quan-
tified. This is done through measurement of the overlap
between IJPDF confidence intervals (i.e. Figure 2).

Empirical hypothesis testing is used in this analysis, since
using traditional methods to find the statistical significance
of overlap often yields misleading results. The IJPDF dis-
tributions of Sections 2.1 and 2.2 can be highly nonnormal,
and even the nonparametric Kolmogorov-Smirnov (K-S) test
will not necessarily give a representative result, since sam-
ples drawn from different distributions cannot be dismissed
without some a priori knowledge of the ‘correct’ distribu-
tion. Steps are as follows:

a. Determine the type of test to perform: model/model
or model/data.

b. Create the appropriate IJPDF distributions from sub-
sets of the input time series. For a model/data compari-
son, model self-overlap (Section 2.1) will be tested against
the model/data IJPDF distribution (Section 2.2). For a
model/model comparison, the two model/data distributions
will be compared.

c(1). To determine whether two distributions differ at sig-
nificance level α, compute the α

2 to 1− α
2 confidence intervals

on the two IJPDF distributions. If these intervals overlap,
the distributions are equivalent; otherwise, they differ.

c(2). To determine the level of confidence one may have in
differences between the distributions, repeat step c at many
different values of α. From this, find the largest α for which
the confidence intervals overlap, equivalent to locating the
smallest significance level at which the distributions differ.
Where αmax ≤ 0.1, for example, the null would be rejected
at the 90% level. In the limit of identical distributions, αmax

(minimum significance) approaches 1 (0); when there is no
overlap, αmax (minimum significance) approaches 0 (1).

The end result of applying steps a-c(1) is a map of the lo-
cations in parameter space where the two time series are the
same/different at confidence level α. If step c(2) is used in-
stead, a map of the confidence level at which the time series
differ results. This provides an immediate, visual depiction
of the effects of changing model parameters.

Model/data validation is performed on three runs: CC-
SMcontrol, the CM2.1 run discussed earlier, and an addi-
tional CCSM run using a lower value of the threshold rela-
tive humidity for cloud formation, hereafter ‘RHLOW’. To
prevent frequency ‘bleeding’ effects, the CORE hindcast is
compared only to model subintervals of the same length (in
this case, 55 years); this is therefore a test of how well the
agreement between CORE and 55-year model subintervals

compares to internal model variability. Results are found in
the left-hand panels of Figure 3; horizontal lines indicate dif-
ferences at the 80, 90 and 95% levels. CCSMcontrol agrees
relatively well with CORE from 2-6 year periods and for pe-
riods longer than 12 years, but not in the 6-12 year band.
RHLOW does somewhat better in the 6-12 year band, but
does not agree as well with CORE at long periods. Both
CCSM runs demonstrate better agreement with CORE in
the 2-8 year band than does CM2.1, but none of the models
perform well beyond 10 years.

Model/model validation is next performed, using two
pairs of model runs: CCSMcontrol/CM2.1 and CCSMcon-
trol/RHLOW. Results are shown in the right-hand panels
of Figure 3: CCSMcontrol and CM2.1 differ throughout the
4-10 year band, but only at long (≥ 200 year) subinterval
lengths. In contrast, for the CCSMcontrol/RHLOW com-
parison, long-period agreement is generally good, and the
areas of disagreement in the ENSO band are smaller than
for CCSMcontrol/CM2.1. Within the 2-8 year band, CCSM-
control and RHLOW disagree for subintervals longer than
200 years, and RHLOW shows better general agreement
with CORE for shorter periods. CCSMcontrol may there-
fore be considered less accurate for short-period ENSO. The
reverse is true for the 5-8 year band, where CCSMcontrol is
more consistent with CORE. Likewise for CCSMcontrol vs.
CM2.1, where CCSM shows better overall agreement with
data yet the models disagree with one another, this test
indicates that CCSMcontrol does a better job representing
ENSO variability.

The above test cases form ‘sanity checks’, in that chang-
ing model parameters affects the results less than using an
entirely different model. Also, an ‘intermediate’ comparison
case (not pictured) shows intermediate results: a test run
using the dynamic chlorophyll feedback of Jochum [2009]
shows differences from CCSMcontrol at the 85% significance
level throughout the ENSO band. We therefore anticipate
that this method will accurately represent true physical dif-
ferences between models.

3. Conclusions
Wavelet probability analysis is a robust method of mea-

suring agreement in ENSO variability between one or more
data sets. Using the PDF of the wavelet power, CCSM3.5 is
seen to agree extremely well with the ocean hindcast prod-
uct of Large and Yeager [2004a], lending credence to the use
of this model as a baseline for the study of long-term ENSO
variability.

Self-agreement depends strongly on the record length;
the self-overlap IJPDF confidence interval narrows expo-
nentially with the length of the model subinterval. Using

Figure 1: Results of hypothesis testing procedure:

the minimum significance level 1 − α at which a con-

trol model run (CCSMCTL) and an ocean hindcast

(CORE) disagree as a function of oscillation period.

Time series analysis will rely on a suite of tools

developed at the University of Colorado (Stevenson
et al., 2010), and available on the Web1. The proba-

bility distribution function of the wavelet spectrum

is used to measure the degree of variability at any

given frequency. Then by comparing subsets of one

time series to subsets of another, it is possible to de-

termine at any desired confidence level whether the

internal scatter in the two time series differ. The

strength of this method lies in its ability to identify

the significance level at which variability in two time

series differ, regardless of their length. Additionally,

once the input time series have been constructed it

requires only a few minutes to finish the calculation.

The method has been quite effective at model

validation against modern observations. For exam-

ple, using NINO3.4 SST output from the CCSM, Stevenson et al. (2010) showed that the model signal is

distinguishable from the modern record at some, but not all, frequencies (see Figure 1): agreement is much

stronger in the ENSO band than at longer periods.

The CSIRO Mk3L, like all coupled models, suffers from biases relative to data. The higher-resolution

version, the CSIRO Mark 3, was shown to have an anomalously wide ENSO-related SST pattern, extending

all the way to the western boundary of the Pacific (Capotondi et al., 2006); this may influence model accuracy

in the coral locations. Capotondi et al. (2006) also showed that the dominant spectral peak for NINO3.4 SST

in CSIRO Mark 3 is too short relative to observations, and that the associated zonal wind stress pattern is

too narrow. This work will search for signatures of these biases, as well as investigating other effects.

Dr. Phipps has at his disposal several millennial-scale model runs: both a ‘control’ 10,000 year run

performed under constant forcing conditions and a three-member ensemble for the past 8,000 years, forced

with orbital insolation alone. I plan to run a series of tests using both the forced and unforced models relative

to various portions of the coral record, to establish the frequencies at which the model and proxy data agree

in both modern and ancient times. Understanding how model/data agreement changes as a function of

1http://atoc.colorado.edu/˜slsteven/Toolbox.html
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Figure 1: Results of hypothesis testing pro-
cedure: the minimum significance level 1−α
at which a control model run (CCSMCTL)
and an ocean hindcast (CORE) disagree.

The end result will be a catalog of the CCSM and CSIRO
Mk3L’s agreement/disagreement with corals, allowing valida-
tion of model ENSO throughout the Holocene and examination
of the model physics which could drive these differences.

4 Budget

No funding is necessary for Fox-Kemper, McGregor or Phipps.
Stevenson requests 2 months of summer salary at the post-
comps graduate student level, funding for 2 months of travel
to the Sydney area for direct collaboration with McGregor and

Phipps, and page charges for one publication. The total is approximately $15k, not including indirect costs.

5 Summary

This project is an innovative use of long model integrations and high-resolution coral proxy data to under-
stand long-term variations in ENSO activity. The timing of the project is opportunistic, taking advantage of
the recent completion of the WPA toolkit and the start of the McGregor/Phipps grant. Successful comple-
tion of this study will lead to an entirely new conception of model validation; for the first time, climate model
performance can be evaluated relative to both ancient and modern observations. The result will be the first
statistically robust, millennial-scale climate model validation, an unprecedented achievement. Results from
this work will be used to motivate more detailed model/data intercomparisons in the future.

This project complements Stevenson’s PhD work on dynamical ENSO response to climate change; di-
agnostics already performed on CCSM show that ENSO modes strongly depend on external forcing (i.e.,
atmospheric CO2). After the project is completed, the results will be used to understand the relation be-
tween past and potential future shifts in ENSO dynamics as well as illustrating the remaining biases in
current-generation coupled models. In short, this is a relatively inexpensive project which nonetheless holds
the potential to significantly advance interdisciplinary climate modeling efforts, and to change the way joint
modeling and observational studies are performed throughout the international community.
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Figure 2: Minimum significance level 1 − α
at which a model and modern ocean data dis-
agree. Disagreement at 8yr and > 20yr may be
observational undersampling or model bias.

Results will include a proof-of-concept demonstration of
WPA use with paleodata, a comparison of CCSM and CSIRO
Mk3L with coral variability throughout the Holocene era, and
clues as to the physics and model parameters that drive and
control ENSO variability on centennial and longer timescales.

0.5 Requested Budget

Funding is needed solely for Stevenson: 2 months summer
salary (post-comps graduate student, 11 months & tuition

NASA fellowship supported), funding for 2 months travel to Sydney for collaboration/training, and funds
for one publication totaling approximately $15k, without indirect costs.

0.6 Expected Outcome and Impact

Our innovative, robust statistical methods will compare long model integrations and high-resolution coral
proxy data to understand long-term variations in ENSO activity. The project timing takes advantage of the
recent completion of the WPA toolkit and the start of the McGregor/Phipps project to create a new model
validation paradigm. Our results will be useful for modern and paleoclimate work: we will provide statistical
evaluation of climate models relative to both ancient and modern observations, yielding the first statistically
robust, millennial-scale climate model validation. The work will serve as proof of concept for more detailed
model/data comparison of ENSO using paleoclimate records.
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