Mixed Layer Restroration

Baylor Fox-Kemper

Collaborators:
R. Ferrari, R. Hallberg, G. Flierl, G. Boccaletti and the CPT-EMiLIe team

LDEO DOCP Seminar
Friday 12/1/06, 11:00-12:00
Upper Ocean in Climate Models

- Large-scale ocean circulation (100 - 10,000 km) => resolved
- Mesoscale variability (10 - 100 km) => resolved or parameterized
- Submesoscale variability (100 m - 10 km) => ignored
- Turbulent mixing (10 cm - 100 m) => parameterized

Boundary Layer Models

Submesoscale variability

Coupling? Coupling?

Mesoscale resolving models

Climate models
The mixed layer is not TOTALLY mixed. Lateral density gradients are common.

1) What does its stratification imply?
2) How does the stratification get set?
3) Why do we care?
The Stratification Permits
Two Types of Baroclinic Instability:

Mesoscale and SubMesoscale (Boccaletti et al., 2006)
Mesoscale and SubMesoscale are Coupled Together:

ML Fronts are formed by Mesoscale Straining.

Submesoscale eddies remove PE from those fronts.
Zooming In

Graphs showing ocean current patterns at different depths over 300 days.
Observed: Strongest Surface Eddies = Spirals on the Sea?

Figure 1. A pair of interconnected spirals in the Mediterranean Sea south of Crete. This vortex pair has a clearly visible stagnation point between the two spirals, the cores of which are aligned with the preconditioning wind field. 7 October 1984.

Figure 12: Probability density function of relative vorticity divided by Coriolis parameter. (a) Results from the numerical simulation of a slumping horizontal density front. ($z > 100$ only to exclude bottom Ekman layer.) The PDF is estimated using surface velocity measurements at day 25 (see also Fig. 11). A positive skewness appears as soon as the baroclinic instability enters in the nonlinear stage, and it continues to grow. Note that the peak at $\zeta/f = 0$ is due to the model’s initial resting condition; that fluid has not yet been contacted by the MLI. (b) Results from ADCP measurements in the North Pacific. The PDF is calculated in bins of width 0.02.
Observed:
ML Density varies in horizontal, only at scales larger than ML Def. Rad.
S & T vary at all scales.

Midlatitude Pacific near Hawaii: Hosegood et al. 06
Vertical fluxes are Submesoscale

Figure 1: Contours of temperature at the a) surface and b) below the mixed layer base in a simulation with both mesoscale eddies and MLEs (0.2°C contour intervals). Shading indicates the value at the depth where $\overline{w'b'}$ (upper panel) and $|\overline{u'H'}|$ (lower panel) take the largest magnitude.

Horizontal fluxes are Mesoscale
Vertical Buoyancy Fluxes at Different Resolutions

- Comparison of vertical buoyancy fluxes at two different resolutions
- Threefold enhancement of fluxes critically depends on presence of a mixed layer
- The fluxes are such as to rapidly re-stratify the surface mixed layer
AESOP Observations of Rapid Restratification near Monterey Bay

- 1.5 days, 5-6 Aug 2006
- Mixed layer restratifies under weakening wind forcing
- Characterized mixed layer evolution in Lagrangian (float-following) frame.

After one day

30 kt wind

10 kt wind

Courtesy E. D’Asaro
Prototype: Mixed Layer
Front Adjustment

Simple Adjustment

Diurnal Cycle and KPP Adjustment

Note: initial geostrophic adjustment overwhelmed by eddy restratification
Parameterization of Finite Amp. Eddies: Ingredients

Finite Amplitude

At Finite Amplitude
Horizontal Scale Unclear

Vert. Excursions scale with H

Eddy Fluxes are at nearly 1/2 the slope
Schematic of the overturning
Magnitude Analysis: Vert. Fluxes

Extraction of potential energy by submesoscale eddies:

$$-\langle wb \rangle = \frac{\partial \langle PE \rangle}{\partial t} \approx \frac{\Delta PE}{\Delta t} \propto \frac{\Delta z \Delta b}{\Delta t}$$

Buoy. diff just parcel exchange of large-scale buoy.

Flux slope scales with the buoy. slope:

$$\frac{\Delta y}{\Delta z} \propto -\frac{\partial \bar{b}}{\partial z} \frac{\partial \bar{b}}{\partial y}$$

Time scale is turnover time of thermal wind:

Vertical scale known: $$\Delta z \propto H$$

Fox-Kemper et al., 2007
Eddies effect a largely adiabatic transfer: thus representable by a **streamfunction**

$$
\langle \Psi \rangle \propto \frac{H^2 \nabla \bar{b} \times \hat{z}}{|f|} \quad \rightarrow \quad \langle u'b' \rangle \equiv \langle \Psi \rangle \times \nabla \bar{b}
$$

For a consistently upward, and horizontally downgradient flux,

$$
\langle w'b' \rangle \propto \frac{H^2}{|f|} |\nabla \bar{b}|^2
$$

And horizontally downgradient flux.

$$
\langle u'_Hb' \rangle \propto -\frac{H^2 \partial \bar{b}}{|f|} \nabla_H \bar{b}
$$
Fox-Kemper et al. (previous session) find that in the limit of strong rotation, the restratifying effect of mature SMI is well captured by parameterizing a downgradient overturning streamfunction within the (∇b).

It works for Prototype:

Closed Circles: No Diurnal
Open Circles: With Diurnal

>2 orders of magnitude!
Vertical Structure: like \langle w'b' \rangle from Eady solution.

Eady Solution

\[
\frac{\sinh \left(\frac{-2z}{H \sqrt{Bu_\kappa}} \right) \sinh \left(\frac{2(H+z)}{H \sqrt{Bu_\kappa}} \right)}{\sinh^2 \left(\frac{1}{\sqrt{Bu_\kappa}} \right)}
\]

Simplified Form:

\[
-\frac{4z(z+H)}{H^2}
\]
What does it look like?
Summary so far:

Ocean mixed layer isn't totally mixed

Submesoscale vertical fluxes are important in setting mixed layer stratification

Weak mixed layer stratification makes for submesoscale eddies by baroclinic instability

Their overturning can be parameterized

Now we turn to their impact
Where in the world are the fluxes?

(Equiv. Vert. Heat Flux from Satellite SSHA)

Where convection makes ML deep.
Biological Impact?

Ocean color image showing submesoscale structure in chlorophyll concentration near Tasmania.

Vert. velocity of typical submesoscale eddies: > 20 m/day
Where in the world are the fluxes?

Where *convection* makes ML *deep*, which is where the ocean talks to the atmosphere.

Those are the biggest fluxes, but elsewhere surface fluxes are weaker, too.

Overall, MLE estimates exceed:

- 50% of monthly-mean surface flux climatology 25% of the time,
- and
- 5% of monthly-mean surface flux climatology 50% of the time.

(compared to Grist & Josey 2003)
Changes To Mixing Layer Depth in Eddy-Resolving Southern Ocean Model
Changes To Mixing Layer Depth in Eddy-Resolving Southern Ocean Model
Surf. Buoy. Gradients

\[\log_{10}(||\nabla p||^2 / 1 \text{ kg}^2 \text{ m}^{-8}) \]
Improves Restratification after Deep Convection

Note: scaling agrees with Haine&Marshall (98) and Jones&Marshall (93,97)

Equator (f→0) and coarse resolution (up to 1 deg) are manageable
Known Deep Bias in Other Models

MLD from MITgcm/ECCO

MLD from Obs.

Hydrography of the Labrador Sea during Active Convection

Robert S. Pickart and Daniel J. Torres

Courtesy I. G. Fenty
Deep Bias Partly Convection, but also total absence of restratification, (GM can’t do it because of tapering)

Pickart et al 02.
Conclusion:

Submesoscale features, and mixed layer eddies in particular, exhibit large vertical fluxes of buoyancy that are presently ignored in climate models.

A parameterization of mixed layer eddy fluxes as an overturning streamfunction is proposed. The magnitude comes from extraction of potential energy, and the vertical structure resembles the linear Eady solution.

Eddies’ main effect is restratification of ML with sizeable equivalent vertical heat fluxes. Many observations are consistent, and model biases are reduced. Biogeochemical effects are likely, as vertical fluxes and mixed layer depth are changed.

How to separate effects of frontogenesis??
The Parameterization:

Thus, the Streamfunction:

\[\Psi = \frac{C_e H^2 \mu(z)}{|f|} \nabla \bar{b} \times \hat{z} \]

The horizontal fluxes are downgradient:

\[u'_H b' = -\frac{C_e H^2 \mu(z) \frac{\partial b}{\partial z}}{|f|} \nabla_H \bar{b} \]

Vertical fluxes always upward to restratify:

\[w'b' = \frac{C_e H^2 \mu(z)}{|f|} |\nabla \bar{b}|^2 \]

Adjustments for coarse resolution and \(f \to 0 \) are known
Taper to SML at Equator

\[\Psi = \frac{C_e H^2 \mu(z)}{|f|} \nabla \bar{b} \times \hat{z} \]

\[\Psi = \frac{C_e H^2 \mu(z)}{\sqrt{f^2 + \tau^{-2}}} \nabla \bar{b} \times \hat{z} \]

Converges to Young (1994) Subinertial ML Approx. at equator, which is gravity waves interrupted by mixing.
Coarse Resolution Adjustment

\[
\frac{w' b'}{f} = C_e H^2 \frac{\mu(z)}{|f|} |\nabla \bar{b}|^2
\]

\[C_e \rightarrow C_e \frac{\Delta x}{L_d}\]
Coupling to turbulence?

We saw little effect of KPP/diurnal on MLEs, but...
AESOP Observations of Rapid Restratification

- 1.5 days, 5-6 Aug 2006
- Mixed layer restratifies under weakening wind forcing
- Characterized mixed layer evolution in Lagrangian (float-following) frame.

After one day

30 kt wind

10 kt wind

Courtesy E. D’Asaro
GRF/MLE Rapid Restratusification

Initial Conditions

After one day

Flierl, Fox-Kemper, Ferrari
Horiz. gives leftovers (vb only).

Vert. reduces ML base density jump (mostly wb)
‘Diffusive’ Corrections

Horiz. gives difference in Streamfct (vb only).
Magnitude Analysis 2: Horizontal Fluxes

- Scaling for the Horizontal Buoyancy Flux
- Growing Baroclinic Instab. Fluxes near 1/2 the slope
- Vertical Scale is H
- Velocity scale is thermal wind

\[
\frac{v' b'}{v b} \propto \frac{V(N^2 \Delta z + M^2 \Delta y)}{-N^2 M^2 H^2 f}.
\]
A Blumen multi-SQG model allows an approximate coupled run to equilibrate.
Fluxes due to Psi
How I got into ML Stuff

Layer 9, T=750.08 yrs., Rho=1026.6kg m⁻³
How I got into ML Stuff