
Baylor Fox-Kemper U. Colorado-Boulder, with Scott Bachman & Andrew Margolin (students), Frank Bryan & John Dennis (NCAR)

OS2010 Meeting, Fri. 2/26/2010 2-2:15
Work supported by NSF 0825614, 0934737
Computing supported by IBM
Tracer Flux-Gradient Relationship

\[u' \tau' = -M \nabla \tau \]

Most subgridscale eddy closures have this form: GM*, Redi, FFH** submesoscale

Relates the eddy flux to the coarse-grain gradients locally

If we knew the dependence of \(M \) on the coarse-resolution flow, we’d have the optimal local eddy closure

*Gent & McWilliams (1990) **Fox-Kemper, Ferrari, Hallberg (2008)
The Character of the Submesoscale

(Capet et al., 2008)

- Fronts
- Eddies
- $Ro = O(1)$
- $Ri = O(1)$
- near-surface
 - 1–10km, days

Eddy processes mainly

baroclinic instability

(Boccaletti et al ’07, Haine & Marshall ’98).

Parameterizations of

baroclinic instability

apply? (GM, Visbeck, FFH).
A Global Parameterization of Mixed Layer Eddy
Restratification

with FLOW DEPENDENT \(\mathbf{M} \) validated against simulations

Fox-Kemper, Ferrari, & Hallberg (2008) &
Fox-Kemper, Danabasoglu, Ferrari, & Hallberg (2008)

\[
\begin{bmatrix}
\overline{u'}\overline{\tau'} \\
\overline{v'}\overline{\tau'} \\
\overline{w'}\overline{\tau'}
\end{bmatrix} = - \begin{bmatrix}
0 & 0 & -\Psi_y \\
0 & 0 & \Psi_x \\
\Psi_y & -\Psi_x & 0
\end{bmatrix} \begin{bmatrix}
\overline{\tau}_x \\
\overline{\tau}_y \\
\overline{\tau}_z
\end{bmatrix}
\]

\[
\Psi = \begin{bmatrix}
\Delta x \\
\frac{L_f}{2z + 1}
\end{bmatrix} \cdot \frac{C_e H^2 \mu(z)}{\sqrt{f^2 + \tau^{-2}}} \cdot \nabla \overline{b} \times \hat{\mathbf{z}}
\]

\[
\mu(z) = \begin{bmatrix}
1 - \left(\frac{2z}{H} + 1 \right)^2 \\
1 + \frac{5}{21} \left(\frac{2z}{H} + 1 \right)^2
\end{bmatrix}
\]

Tuesday, August 3, 2010
Physical Sensitivity of Ocean Climate to Submesoscale Eddy Restratification:

FFH implemented in CCSM (NCAR), CM2M & CM2G (GFDL)

NO RETUNING NEEDED!!!

Improves CFCs

Deep ML Bias reduced

From Fox-Kemper et al., in prep

Tuesday, August 3, 2010
Sensitivity of Climate to Submeso: AMOC & Cryosphere Impacts

May Stabilize AMOC

Affects sea ice

NO RETUNING NEEDED!!!

These are impacts: bias change unknown

Figure 10: Wintertime sea ice sensitivity to introduction of MLE parameterization (CCSM+ minus CCSM−): January to March Northern Hemisphere a) ice area and b) thickness and July to September Southern Hemisphere c) ice area and d) thickness.

Tuesday, August 3, 2010
Conclusions
Submesoscale

- FFH is implemented in at least 3 IPCC models
- Parameterization reduces bias in CFCs & Mixed Layer Depth
- Parameterization also affects ice & AMOC variability—need truth?
- Flow-dependent, nondimensional scalings validated against simulations *did not require retuning*
The Character of the Mesoscale

(Capet et al., 2008)

- Boundary Currents
- Eddies
- $Ro = O(0.1)$
- $Ri = O(1000)$
- Full Depth
- Eddies strain to produce Fronts
- 100km, months

Eddy processes still baroclinic & barotropic instability.

Parameterizations (GM, Visbeck, Eden).
Virtually all subgridscale eddy closures may be written as: GM, Redi, FFH Submesoscale

Relates the eddy flux to the coarse-grain gradients \(\nabla \tau \) locally.

If we knew the dependence of \(M \) on the coarse-resolution flow, we’d have the optimal local eddy closure.
\[\begin{bmatrix} \frac{\partial u'}{\partial x} \\ \frac{\partial v'}{\partial y} \\ \frac{\partial w'}{\partial z} \end{bmatrix} = - \begin{bmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{bmatrix} \begin{bmatrix} \bar{\tau}_x \\ \bar{\tau}_y \\ \bar{\tau}_z \end{bmatrix} \]

Assume same \(\mathbf{M} \) for all tracers:

- 3 equations per tracer
- 9 unknowns (components) + rot-parts (2/tracer)

BY USING 3 or MORE TRACER FLUXES, determine it!!!

(a la Plumb & Mahlman '87, Bratseth '98)
Sym Part=Anisotropic* Redi

\[
\begin{bmatrix}
\bar{u}' \tau' \\
\bar{v}' \tau' \\
\bar{w}' \tau'
\end{bmatrix}
= -
\begin{bmatrix}
K_{xx} & K_{xy} & \hat{x} \cdot \mathbf{K} \cdot \hat{\nabla} z \\
K_{yx} & K_{yy} & \hat{y} \cdot \mathbf{K} \cdot \hat{\nabla} z \\
\hat{x} \cdot \mathbf{K} \cdot \hat{\nabla} z & \hat{y} \cdot \mathbf{K} \cdot \hat{\nabla} z & \hat{\nabla} z \cdot \mathbf{K} \cdot \hat{\nabla} z
\end{bmatrix}
\begin{bmatrix}
\bar{\tau}_x \\
\bar{\tau}_y \\
\bar{\tau}_z
\end{bmatrix}
\]

Yellow \mathbf{K} ‘are’ horizontal stirring & mixing

Blue factors in Redi (1982) are symmetric and scaled to make
eddy mixing along neutral surfaces

*Anistropic form due to Smith & Gent 04
\[\begin{align*}
\mathbf{u'} \mathbf{\tau'} &= -\mathbf{M} \nabla \mathbf{\tau'} \\
\end{align*}\]

AntiSym Part=Anisotropic GM

\[
\begin{bmatrix}
\mathbf{u'} \mathbf{\tau'} \\
\mathbf{v'} \mathbf{\tau'} \\
\mathbf{w'} \mathbf{\tau'}
\end{bmatrix} = -\begin{bmatrix}
0 & 0 & -\hat{x} \cdot \mathbf{K} \cdot \hat{\nabla} z \\
0 & 0 & -\hat{y} \cdot \mathbf{K} \cdot \hat{\nabla} z \\
\hat{x} \cdot \mathbf{K} \cdot \hat{\nabla} z & \hat{y} \cdot \mathbf{K} \cdot \hat{\nabla} z & 0
\end{bmatrix} \begin{bmatrix}
\mathbf{T}_x \\
\mathbf{T}_y \\
\mathbf{T}_z
\end{bmatrix}
\]

Antisymmetric Elements in GM (1990) are scaled to overturn fronts, make vertical fluxes, extract PE, and restratify the fluid equivalent to eddy-induced advection

Q: Same horiz. mixing \((\mathbf{K})\) as Redi?

*Anisotropic form due to Smith & Gent 04
*Tensor Form (Griffies, 98)
Could you have guessed it?
Validation: \mathbf{M} Reproduces T-flux w/o negative eigs.

- Even though Temp not used as tracer to find \mathbf{M}

\[
\mathbf{v}'T' = -\mathbf{M} \nabla \overline{T} + O(0.1\% \text{error})
\]

- Typically, diagnoses have problem with $\mathbf{K} < 0$

- Here, below the mixed layer only 6% of gridpoints have negative eigenvalues

- These few negative values are consistent with true nonlocal eddy fluxes
Result: Strong Anisotropy Along/Across Isopycnals

Mixing:

Stirring:

Tuesday, August 3, 2010
Result:

Redi $K = GM K$ (mostly)

If so these 2 components should match in Sym & Antisym M
Result:

Redi $K = GM K$ (mostly)

If so these 2 components should match in Sym & Antisym M
Result: Strong Anisotropy Along/Across PV Grads.

Mixing:

Stirring:
Result: eddy KE→ vertical power law w/ M eigs?

We expect: \(K \propto \sqrt{EKE} \)

But what about: \(K \propto \sqrt{\langle KE \rangle} \)
Result:
coarse KE -> vertical structure of Mixing

$K \propto \sqrt{\langle KE \rangle}$

You don't need to know EKE!
Result:

power law not 'random'

\[K \propto \sqrt{\langle KE \rangle} \]

However, can probably do better!

Slopes not random.
Coarse-graining--

A matter of philosophy

It would be nicest if when we diagnosed M it agreed with a theory

However, if theory requires, e.g., scale separation, then it likely won’t agree

But, the approach here gives us the answer we need (M), even if it’s not the answer we want.

Plumb & Mahlman’s work suffers from the same theoretical issues--McDougall is working on it!
Conclusions Mesoscale

- Direct diagnosis of M is a valuable tool
- Gives validated tracer fluxes without negative eigenvalues or rotational issues
- Still, unfamiliar interpretation
- No clean comparison to theory (GLM? Scale Separation? Ensemble? Stochastics?)
- More to come!

(e.g., Ferrari et al ‘08 vs. Ferrari et al. ‘10)