What Needs Parameterization?
Assessing Climate Model Errors by Timescale

Baylor Fox-Kemper (CU-Boulder & CIRES)
with Peter Hamlington (CU),
Sean Haney (CIRES/ATOC), Adrean Webb (CIRES/APPM), Erik Baldwin-Stevens (CIRES/ASEN MA)
Luke Van Roekel, Keith Julien, Peter Sullivan, Jim McWilliams

AMS 18th Air-Sea Meeting, 7/12/12
Sponsors: NSF 0934737, NASA NNX09AF38G
Air-Sea Flux Errors vs. Data (Large & Yeager 09)

Biases and Variance Errors

- Mean Biases are familiar: WBC, Upwelling, Deep Convection, ITCZ

- Annual errors are *larger & more significant* than interannual

- Annual=Fast=Mixed Layer; Global extent!

- Continental vs. Maritime

So, annual is worse than interannual, but...

- Annual variability errors are largely an OBL and ABL error problem.
- Fundamental ABL issues (e.g., clouds) remain.
- Fix what we can: many OBL processes are known to be important to this community, but not yet in climate models.
- Even small-scale phenomena can have important large-scale effects.
The Character of the Submesoscale

(Capet et al., 2008)

- Fronts
- Eddies
- $Ro = O(1)$
- $Ri = O(1)$
- near-surface
- 1-10km, days

Eddy processes often baroclinic instability (Boccaletti et al '07, Haine & Marshall '98).

Parameterizations of baroclinic instability?
Mixed Layer Eddy Restratification

Estimating eddy buoyancy/density fluxes:

$$\mathbf{u}'\mathbf{b}' \equiv \Psi \times \nabla \bar{\mathbf{b}}$$

A submeso eddy-induced overturning:

$$\Psi = \frac{C_e H^2 \mu(z)}{|f|} \nabla \bar{\mathbf{b}} \times \mathbf{\hat{z}}$$

Mixed Layer Eddy Restratification

Estimating eddy buoyancy/density fluxes:

\[\overline{u'\,b'} \equiv \Psi \times \nabla \overline{b} \]

A submeso eddy-induced overturning:

\[\Psi = \frac{C_e H^2 \mu(z)}{|f|} \nabla \overline{b} \times \hat{z} \]

in ML only:

\[\mu(z) = 0 \text{ if } z < -H \]

Mixed Layer Eddy Restrnatification

Estimating eddy buoyancy/density fluxes:

\[
\mathbf{u}'b' \equiv \Psi \times \nabla \bar{b}
\]

A submeso eddy-induced overturning:

\[
\Psi = \frac{C_e H^2 \mu(z)}{|f|} \nabla \bar{b} \times \hat{z}
\]

in ML only:

\[
\mu(z) = 0 \text{ if } z < -H
\]

For a consistently restratifying,

\[
\frac{w'b'}{f} \propto \frac{H^2}{|f|} \left| \nabla H \bar{b} \right|^2
\]

Mixed Layer Eddy Restratiﬁcation

Estimating eddy buoyancy/density ﬂuxes:

\[\mathbf{u}' \mathbf{b}' \equiv \Psi \times \nabla \bar{b} \]

A submeso eddy-induced overturning:

\[\Psi = \frac{C_e H^2 \mu(z)}{|f|} \nabla \bar{b} \times \hat{z} \]

in ML only:

\[\mu(z) = 0 \text{ if } z < -H \]

For a consistently restratiﬁng,

\[\frac{w'}{b'} \propto \frac{H^2}{|f|} \left| \nabla_H \bar{b} \right|^2 \]

and horizontally downgradient ﬂux.

\[\frac{u'}{H b'} \propto \frac{-H^2 \partial \bar{b}}{|f|} \nabla_H \bar{b} \]
Physical Sensitivity of Ocean Climate to Submesoscale Eddy Restratification:

MLE implemented in CCSM (NCAR), CM2M & CM2G (GFDL)

NO RETUNING NEEDED!!

Improves CFCs (water masses)

Deep ML Bias reduced

Physical Sensitivity of Ocean Climate to Submesoscale Eddy Restratification:

MLE implemented in CCSM (NCAR), CM2M & CM2G (GFDL)

Deep ML Bias reduced

Shallow ML Bias worse

NO RETUNING NEEDED!!!

Improves CFCs (water masses)

Bias w/o MLE

The Character of the Langmuir Scale

- Near-surface
- $\mathcal{R}_o >> 1$
- $\mathcal{R}_i < 1$: Nonhydro
- 10-100m
- 10s to mins
- $w, u = O(10 \text{cm/s})$
- Stokes drift
- Eqtns: Craik-Leibovich
- Params: McWilliams & Sullivan, 2000, etc.
Data + LES, Southern Ocean mixing energy: Langmuir (Stokes-drift-driven) and Convective

But, how well do we know Stokes drift?

\[
\frac{B_s}{u^2 s/h} = \frac{w^3_s/h}{w^3_s L/h} = \frac{h}{L_L}
\]

\[
\frac{u^2_s u_s / h}{u^2_s u_s / h} = \frac{u^3_s / h}{w^3_s L/h} = L a^2
\]

\[\varepsilon h / u_s^3\]

from LES Scaling

Within a factor of 2.
Assuming full-development (e.g., McWilliams & Restrepo, 1999) is worse

Generalized Turbulent Langmuir No., Projection of u^*, u_s into Langmuir Direction

A scaling for LC strength & direction!

Wave Penetration Depth

- Harcourt and D’Asaro ’08 find an empirical way to consider mixed-layer-average mixing by Langmuir turbulence
- Long waves (swell) do more than short waves with similar surface Stokes drift
- We combine their scaling with misalignment

Traditional Misalignment

Jan00 median $\frac{w^2}{u'^2}(L_a)$

Wave Penetration

Jan00 median $\frac{w^2}{u'^2}(L_{\text{sl}})$

Both

Jan00 median $\frac{w^2}{u'^2}(L_{\text{sl,proj}})$

Jan, 2000
Traditional

Wave Penetration

Mar00 median $w^2/u^2(L_{a\text{t}})$

Mar00 median $w^2/u^2(L_{a\text{proj}})$

Mar00 median $w^2/u^2(L_{a\text{sl}})$

Mar00 median $w^2/u^2(L_{a\text{sl,proj}})$

Both

Mar, 2000
Traditional

Wave Penetration

May 00 median $w^2/u^2(La_{tr})$

May 00 median $w^2/u^2(La_{proj})$

May 00 median $w^2/u^2(La_{sl})$

May 00 median $w^2/u^2(La_{sl,proj})$

May, 2000
Traditional Misalignment

Wave Penetration

Both

July, 2000
Traditional

Wave Penetration

Dec00 median $w^2/u^2 (L_{a_t})$

Dec00 median $w^2/u^2 (L_{a_{proj}})$

Dec00 median $w^2/u^2 (L_{a_{sl}})$

Dec00 median $w^2/u^2 (L_{a_{sl,proj}})$

Both

Dec, 2000
Results

- Biases in climate model on annual to interannual timescales can be attributed (partly) to
 - Submesoscale mixed layer eddy restratification
 - Langmuir turbulence mixing

- We have been improving parameterizations

- But much work remains—we need more technology transfer from the OBL community!
All papers at:
fox-kemper.com/research

Many more wave-climate effects to come... stay tuned!

Coupling between Langmuir and Submeso?

2 runs:
Both spindown of submesoscale filament

Right -->
Stokes & Wind

<-- Left
Wind Only
Coupling between Langmuir and Submeso?

2 runs:
Both spindown of submesoscale filament

Right --> Stokes & Wind

<-- Left Wind Only
Vertical Velocity & Variance
Scale Decomposed Fields

Separate Langmuir turbulence and submesoscales by filtering at roughly 200m

Low-pass

High-pass

Ideal filtering would take into account wind-wave direction
Momentum $\langle uw \rangle$ and Heat $\langle wT \rangle$.

Shear Flux is -10 to -25%

Langmuir Flux is -100% to -140%
SI vs. LT--Different MLDs for q, T