Atmosphere-ocean boundary layers and fluxes

Baylor Fox-Kemper (Brown DEEP Sci.)

with Qing Li & Nobu Suzuki (Brown), Scott Reckinger (Montana), and Sean Haney & Peter Hamlington (CU-Boulder), Luke Van Roekel (LANL), Adrean Webb (U. Tokyo), Keith Julien (CU-Boulder) Greg Chini (UNH), E. D’Asaro & R. Harcourt (UW), Peter Sullivan (NCAR) & Jim McWilliams (UCLA), Frank O. Bryan, Gokhan Danabasoglu & Bill Large (NCAR), Mark Hemer (CSIRO)

Translating Process Understanding to Improve Climate Models
NOAA GFDL, Princeton, NJ, 10/15/15, 11:20–11:40
Sponsors: NSF, NASA, BP GoMRI
In practice, it is easier to observe the integrated ocean effects (ocean heat content (OHC), salinity) rather than the fluxes themselves.

However, problematic prediction and attribution—this is where modeling helps!
What does hydrography show? OHCs and fluxes are not fixed! 90% anomalous (anthropogenic?) warming ends up in oceans. Hansen et al. (2011).

Fig. 10. (a) Estimated contributions to planetary energy imbalance in 1993–2008, and (b) in 2005–2010. Except for heat gain in the abyssal ocean and Southern Ocean, ocean heat change beneath the upper ocean (top 700 m for period 1993–2008, top 2000 m in period 2005–2010) is assumed to be small and is not included. Data sources are the same as for Figs. 8 and 9. Vertical whisker in (a) is not an error bar, but rather shows the range between the Lyman et al. (2010) and Levitus et al. (2009) estimates. Error bar in (b) combines estimated errors of von Schuckmann and Le Traon (2011) and Purkey and Johnson (2010).
GMST vs. SST
vs. MLT vs. OHC

BUDGET is for Heat Content

Atmosphere
Recent Warm: 0.15K/decade
= 3.4m Ocean: 0.15K/decade
= 34m Ocean: 0.15K/century
< 0.01% this seasonality

http://www.oc.nps.edu/
Global climate models do pretty well at matching heat fluxes and watermasses. Models get better every generation due to improved resolution and parameterizations. What do we usually do to make these improvements? Changes to model physics, clouds, resolution, numerics, etc. Updates of the flux laws (but not recently).

Often agreement in time mean fluxes

Often disagreement in annual band flux variability

Mesoscale anisotropy often reduces mean biases:
- pCFC by up to 24%
- Temp by up to 48%
- Salinity by up to 63%

Mesoscale Eddies have a profound effect on Q_{BML}
Even small changes affect surface warming budget
Mesoscale Eddy Air-Sea Feedbacks?

Effect on net air-sea fluxes observed: too hard to parameterize?

Bryan et al. 2010, Frenger et al. 2013
By comparing resolved mesoscale eddies to parameterized ones (with same 50km atmosphere), Griffies et al show global differences of $O(0.7 \text{ W/m}^2)$ or $O(0.14 \text{ K/century})$.
Perform large eddy simulations (LES) of Langmuir turbulence with a submesoscale temperature front.

Use NCAR LES model to solve Wave-Averaged Eqtns.

2 Versions:
1 With Waves & Winds
1 With only Winds

Computational parameters:
Domain size: 20km x 20km x -160m
Grid points: 4096 x 4096 x 128
Resolution: 5m x 5m x -1.25m
1000x more gridpoints than CESM

Near Future of Modeling

- LES 5m, 20km x 20km, weeks. Atmosphere & Ocean separate—not coupled.
- NCOM 3-4 km, Global, Forecasts < Annual, ocean-only
- JPL ECCO MITgcm LLC4320, 2km, Global, Months, ocean-only
- CFSv2, CFSR, 50km, Global, Decades, coupled
- CESM 10km, 100km, Global, Centuries, coupled
- GFDL 10km, 25km, 100km, Global, Centuries, coupled

For foreseeable future, air-sea flux & boundary layer turbulence will be parameterized except on very small domains—on both climate & weather timescales.
Modeling of decadal variability

First-Principle Process & GCM Modeling: Predictions and Biases

Quantify process uncertainty, how much do Langmuir mixing or anisotropy of mesoscale eddies affect OHC?

Roughly 1 W/m² each as estimated by integrated T difference from control run.

Model versions differ in net air-sea fluxes by 1–6 W/m² in mean and rms. This is 2–10x the observed trend!

Retuning, parameterizations, resolution.

Modeling of decadal variability

Stochastic (unpredictable beyond persistence) Model: Frankignoule & Hasselmann (77)

\[
\frac{dT}{dt} = f'_1 - \lambda T
\]

\[
\lambda = \rho^a C^a_p (\rho^w C^w_p)^{-1} C_H (1 + B) |U| h^{-1}
\]

\[= (1.7 \text{ month})^{-1}\]

One difficulty is getting the reservoir in communication with the atmospheric variability right. Another is getting predictable variability right!

These factors are affected by mixed layer depth.
Langmuir Mixing in CESM: Reduces MLD Errors

<table>
<thead>
<tr>
<th>Case</th>
<th>Global</th>
<th>Summer</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>South of 30°S</td>
<td>30°S–30°N</td>
</tr>
<tr>
<td>CTRL</td>
<td>10.62 (13.40)</td>
<td>17.24 (21.73)</td>
<td>5.38 (6.71)</td>
</tr>
<tr>
<td>MS2K</td>
<td>15.37</td>
<td>15.47</td>
<td>17.03</td>
</tr>
<tr>
<td>SS02</td>
<td>36.79</td>
<td>63.83</td>
<td>7.54</td>
</tr>
<tr>
<td>VR12-AL</td>
<td>9.06</td>
<td>13.47</td>
<td>6.49</td>
</tr>
<tr>
<td>VR12-MA</td>
<td>8.73 (11.83)</td>
<td>12.65 (18.13)</td>
<td>6.61 (7.52)</td>
</tr>
<tr>
<td>VR12-EN</td>
<td>8.95</td>
<td>10.52</td>
<td>8.91</td>
</tr>
</tbody>
</table>

Numbers shown in the parentheses are for the fully coupled experiments.

Anisotropy deepens MLD in Southern Ocean, shallows MLD in North Atlantic, and reduces winter mean rms bias by 15% (annual by 18%)

“Twenty years ago, bulk flux schemes were considered to be uncertain by about 30%; the authors find COARE 3.0 to be accurate within 5% for wind speeds of 0–10 m/s and 10% for wind speeds of between 10 and 20 m/s.” (Fairall et al. 2003).

Since then, COARE has been updated to v3.5 (Edson et al. 2013). Other observation-based schemes exist as well.

\[
\frac{dT}{dt} = \frac{f_1}{h} - \lambda T
\]

GFDL uses a version of Beljaars (1994)

CESM uses a version of Bryan et al. (1996).

This factor is affected by flux laws.
Conclusions

- Improvements to mesoscale, fluxes, boundary layer schemes are similar in bias change magnitude to introducing new physics (submesoscale, Langmuir).

- Mesoscale resolution will soon fix many problems—some difficulty to parameterization (e.g., mesoscale air-sea coupling).

- Scale-aware subgrid models needed for mesoscale resolution.

- Climate model air-sea flux schemes have not been refreshed in 20 years, progress has been made in obs, process, theory since then.

- Entrainment, subduction, seasonality are critical to determining the reservoir of OHC and its timescale—which relate to variability, persistence, predictability. They depend on getting many things right—some easy (Ekman pumping), some hard (turbulent entrainment under diverse forcing).
Consider 1D Oceans: one per watermass

Ekman flushing gives upper limit to λ^{-1} damping timescale
Wave Mixing in CESM: Reduces Subsurface CFC & Temperature Errors